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Abstract

Objective: Direct measurement of low-density lipoprotein cholesterol (LDL-C) is time-consuming and expensive when triglycerides (TG) exceed 400 mg/dL.
We sought to validate and refine a machine-learning (ML) model for rapid estimation of LDL-C in hypertriglyceridemic sera.

Methods: We extracted 25.991 lipid profiles (TG: 400-800 mg/dL) collected between 2010 and 2022 from two Turkish university hospitals. After an 80/20
split, seven ML algorithms were trained; the top two (random forest and XGBoost) were stacked with a decision tree meta-learner (model-3). Performance
on the external test set (n=1.279) was compared with that of direct homogeneous LDL-C assays and the Sampson's formula (NIH-Equ-2) using balanced
accuracy, precision, recall, F1 score, specificity, Pearson correlation coefficient, and Bland-Altman analysis, following International Federation of Clinical
Chemistry and Laboratory Medicine analytical performance specifications.

Results: Model-3 yielded balanced accuracy =99.3%, precision =98.9%, recall =98.9%, and specificity =99.8%. Predicted LDL-C correlated strongly with
direct measurement (r=0.996, p<0.001) and reduced the mean absolute error by 54% compared with NIH-Equ-2. Only 0.39% of cases were underclassified
relative to the European Society of Cardiology/European Atherosclerosis Society LDL-C risk categories. Bland-Altman plots demonstrated no significant
proportional bias across the LDL-C range (mean bias =-0.2 mg/dL; 95% limits of agreement: -7.8 to+7.4 mg/dL).

Conclusion: A stacked ensemble ML model delivers near-assay accuracy for LDL-C prediction in high-TG samples and markedly outperforms current
formula. Implementation could enable same day, low-cost LDL-C reporting without extra laboratory procedures, supporting faster dyslipidaemia
management.

Keywords: LDL, lipid profile, machine-learning, artificial intelligence

Amac: Trigliserid (TG) diizeyi 400 mg/dL'nin (izerine ciktiginda dustk yogunluklu lipoprotein kolesterol (LDL-K) 6lcimii zaman alici ve maliyetli hale
gelmektedir. Bu calismada, hipertrigliseridemik serumlarda hizli LDL-K tahmini icin gelistirilen makine 6grenmesi (ML) modelinin dogrulanmasi ve
iyilestiritmesi amacland.
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Yontem: 2010-2022 yillari arasinda iki tiniversite hastanesinden elde edilen 25,991 Lipid profili (TG: 400-800 mg/dL) retrospektif olarak incelendi. Veriler
%80/20 oraninda ayrildiktan sonra yedi ML algoritmasi egitildi; en iyi iki algoritma (random forest, XGBoost), karar adaci tabanli bir meta-6grenici ile
birlestirilerek (model-3) istiflendi. Dis test setinde (n=1.279) modelin performansi dogrudan homojen LDL-K testleri ve Sampson formiliiyle (NIH-Equ-2)
karsilastiritdi. Degerlendirmede dengeli dogruluk, kesinlik, duyarlilik, F1 skoru, 6zgullik, Pearson korelasyonu ve Bland-Altman analizi kullanilds;
Uluslararasi Klinik Kimya ve Laboratuvar Tibbr Federasyonu analitik performans kriterleri dikkate alind.

Bulgular: Model-3, dengeli dogruluk %99,3; kesinlik %98,9; duyarlilik %98,9 ve dzgilliik %99,8 elde etti. Tahmin edilen LDL-K ile dogrudan dlciim arasinda
giiclil korelasyon saptandi (r=0,996, p<0,001). Model, NIH-Equ-2 formiiliine gére ortalama mutlak hatayi %54 azaltti. Avrupa Kardiyoloji Dernegji/Avrupa
Ateroskleroz Dernedi LDL-K risk kategorilerine gre yanlis siniflandirma orani yalnizca %0,39 idi. Bland-Altman analizinde anlamli orantisal yanlilik
gozlenmedi (ortalama fark =-0,2 mg/dL; %95 giiven aralijl, 7,8 ile +7.4 mg/dL).

Sonuc: Yigilmis topluluk ML modeli, yiksek TG duzeylerinde LDL-K tahmininde dogrudan testlere yakin dogruluk saglamis ve mevcut formiillerden belirgin
olarak dstiin bulunmustur. Modelin uygulanmasi, ek laboratuvar islemleri olmadan ayni giin, diistik maliyetli LDL-K raporlamasina olanak taniyabilir ve

dislipidemi yonetiminde hiz kazandirabilir.
Anahtar Kelimeler: LDL, Lipid profili, makine 6grenmesi, yapay zeka

Introduction

Artificial intelligence (Al) applications in medicine have
become increasingly widespread. Machine-learning (ML)
developments have been widely adopted in medical Al (MAI)
applications. The growth of MAl is due to the ever-increasing
abundance of health data, the primary input for ML.
Interest in MAI stems from its ability to generate diagnostic
predictions from complex datasets. The MAI prediction and
visualization applications have produced fast and accurate
results in solving many medical problems®.

However, dataset size is not the only driving force behind
MAI. The number, variety, and accuracy of input data that
are directly related to the output significantly influence the
success of results produced by the designed ML models.
Therefore, the data are expected to include all information
related to the research output. In computer science,
supervised ML (i.e., controlled ML) is currently the most
widely used tool in MAI.

Computer algorithms such as computer-aided diagnosis
or clinical decision support systems used for supporting
diagnosis, decision-making, and prediction are classified as
diagnostic devices®?. The methods for clinical validation and
development are similar to those for standard diagnostic
tests. Therefore, medical devices used in MAI applications
must undergo rigorous clinical and experimental validation
before use in patients to ensure patient safety and the
efficacy of the method. Additionally, the reproducibility of the
ML prediction results is a major concern of the International
Federation for Clinical Chemistry and Laboratory Medicine
(IFFQ)®.

308

The MAI applications used for clinical validation vary
according to their form, model, and function. Our work aims
to rapidly predict patients' low-density lipoprotein (LDL)
levels prior to the costly and delayed direct measurement.
The present work aims to validate and improve our previous
“LDL predictor model" (p-LDL-M {2}) designed for LDL
prediction in patients with 400< triglyceride (TG) < 800 mg/
dL (abbreviated as high-TG for the rest of the article)®. Our
ultimate goal is to recommend an improved MAI application
for the research community. Although different models
were tested in this work, our present and previous data were
obtained from similar models of testing devices. In other
words, there is no data discrepancy.

The design and validation of generalized, reproducible, and
improved p-LDL-M models is a five-step iterative process.
The steps involve formulating the problem, collecting
and preparing the data, validating and selecting a model,
and interpreting and finally implementing the model. The
improved target model is obtained after identifying the
model with the best performance. Finally, optimization
and feature selection techniques are applied to further
enhance the performance of the developed model. However,
the performance results of interim models have not been
included in the results section to save space and avoid
repeating noncritical results.

LDL-C concentration is the principal target for Llipid-
lowering therapy and a key determinant of atherosclerotic
cardiovascular disease (ASCVD) risk, as emphasized by
recent European Society of Cardiology (ESC)/European
Atherosclerosis Society (EAS) and American College of
Cardiology/American Heart Association Guidelines. However,
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the reliability of conventional LDL-C estimation equations is
limited under hypertriglyceridemic conditions (TG >400 mg/
dL). The Friedewald formula becomes invalid, the Martin-
Hopkins method underestimates LDL-C in low LDL-C ranges,
and even the National Institutes of Health (NIH)-Equ-2
method may introduce bias at very high-TG levels. Therefore,
developing a robust ML-based estimation method is essential
for precise LDL-C assessment in these patients.

The main aim of this study was to develop and validate a
reliable ML-based model capable of predicting LDL-C Llevels
in patients with hypertriglyceridemia (TG >400 mg/dL) before
the costly and delayed laboratory measurements.

Materials and Methods
Study Design

Before commencing the study, the necessary approval was
obtained from the Non-Interventional Ethics Committee
of University of Health Sciences Tiirkiye, izmir Tepecik
Education and Research Hospital, (approval no: 2023/13-
23, date: 12.04.2023) and Non-Interventional Ethics
Committee of Dokuz Eylul University Faculty of Medicine
(approval no: 2023/20-04, date: 14.06.2023). This study was
first conducted at the University of Healt Sciences Tlrkiye,
Dr. Suat Seren Chest Diseases and Chest Surgery Training
and Research Hospital (hospital 1) and at the Dokuz Eyldl
University Research and Application Hospital (hospital 2)
as the validation and improvement phase of the first phase.
All experiments on humans were conducted according to
relevant ethical guidelines and regulations. The experiments
followed protocols approved by the Ethics Committees
of hospital 1 and hospital 2. All experimental protocols
used in this study have been reviewed and approved by
the relevant institutional and/or licensing committee. The
study's participants are three healthcare scientists and two
engineering scientists from four institutions. The participants
comply with the first recommendation to involve diverse
stakeholders in developing clinically useful, practical, and
ethical models. A total of 6.404 patient records with high-
TG levels were presented in the hospital 1 biochemistry
laboratory®. The hospital 2 biochemistry laboratory
maintains records for 20.690 high-TG patients. During data
analysis, records were omitted if they had missing results for
total cholesterol (TC), TG, high-density lipoprotein (HDL), or
LDL; if results exceeded the linear limits of specific analysis
methods; if they contained zero or negative values; if they
were from patients younger than 18 years of age; or if they
lacked numerical data.

Of 27.094 patient records across the two hospitals, only
25.991 high-TG patient records (6.392 from hospital 1 and
19.599 from hospital 2) were processed using Python®
software (Wilmington, Delaware, USA). As a rule of thumb
in ML design and testing, the dataset was split into three
training subsets (80% of all TG records, all-TG) and three
testing subsets (20% of each dataset). Training and testing
were conducted using nine combinations of datasets and
three ML models. The study results are valid only for patients
with high-TG levels. The TC, HDL, LDL, and TG were analyzed
using Roche Cobas ¢702 (Mannheim, Germany) and Beckman
Coulter AU5800 (California, USA) automated analyzers at
hospital 1 and hospital 2, respectively. Our training and test
sets were completely independent, meaning no test data was
used in training the models. In addition, no data that would
be unavailable during actual use were used; i.e., there was
no data leakage in our analysis. With no data leakage and
an 80:20 independent training-test split, our sample sets
comply with the IFFC recommendations.

Study Population/Subjects

Our study population consisted of 6.392 lipid profile results
obtained between January 2010 and December 2022 at
hospital 1 and 19.559 results obtained between August 2011
and July 2022 at hospital 2. Standardized lipid profile data
collected from the laboratory database included TC, TG,
HDL, and LDL levels that were measured on the same day.
Table 1 shows the main characteristics of the two high-TG
study populations.

At hospital 1, 3.431 cases were male and 2.961 were female.
The mean age of men was 49.72 years, while the mean age
of women was 54.07 years. The mean directly measured LDL
was 149.76+45.28 mg/dL. At hospital 2, 16.638 cases were
male 2.961 were female. The mean ages were 56.81 years for
men and 54.06 years for women. The mean measured direct
LDL level was 151.10+46.44 mg/dL. Figure 1 displays the
standard diagram used for reporting diagnostic accuracy,
illustrating the progression of subjects throughout the study.
Participants were divided into two datasets for statistical
evaluation and ML analysis. The first dataset, typically
comprising 80% of the participants, was used as the training
set, while the remaining 20% formed the test set. In ML, the
training set is utilized to build predictive models, and the test
set is used to assess the prediction accuracy of those models.

Table 2 shows that the training set was divided into three
groups. The first group (n=5113) contains direct LDL data
from hospital 1 with TG levels >400 mg/dL. The second
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group (n=19.599) contains hospital 2 direct LDL data with
TG >400 mg/dL. The third group (n=24.712) comprises the
combined direct LDL data from hospital 1 and hospital 2 for
cases with TG levels >400 mg/dL. In the designed ML models,
the training set of model-1 (the model most similar to our
previous p-LDL-M {2} model) included only the first group
of data, while model-2 used only the second data group.
Model-3 was trained using the sum of the training sets®. It
should be pointed out that the ML models also differ in their
Al architectures.

To ensure unbiased comparability, the test set is the same
for all three models: 20% of the hospital 1 data. The test set
had to be from hospital 1 because testing newly designed
models with a new training and test set from hospital 2

could have been misleading by eliminating cross-hospital
prediction

The LDL level distribution of the 1279 test subjects is shown
in Figure 1. The classification is based on the 2019 ESC/
EAS Guidelines for managing dyslipidemia®. The most
undesirable error in LDL level classification is assigning a
patientto an LDL level below the actual classification (under-
classification). Therefore, preventing under-classification
was one of the primary objectives of the new model designs.
The above properties of the study population indicate full
compatibility with the sample size, race, gender, data
diversity, and train-test set partitioning recommendations of
IFFC.

Table 1. Characteristics of the study population

L . Hospital 1: n=6.392 Hospital 2: n=19.599
Characteristics Units
value + SD value + SD
Age 51.73+11.61 56.39+13.75
Male years 49.72+11.20 56.81+14.05
Female years 54.07+11.61 54.06+11.65
Sex
Male N/A 3431 (%53.7) 16638 (%84.9)
Female N/A 2961 (%46.3) 2961 (%15.1)
Total cholesterol mg/dL 243.16+52.79 248.46+57.82
mmol/L 6.29+1.37 6.45+1.50
Triglycerides mg/dL 510.98+96.71 509.33+97.13
mmol/L 5.77+1.09 5.79+1.10
HDL mg/dL 37.57+8.97 40.51+11.17
mmol/L 0.97+0.23 0.92+0.21
Non-HDL cholesterol mg/dL 205.62+48.12 207.96+51.30
mmol/L 5.32+1.24 5.32+1.24
Direct LDL mg/dL 149.76+45.28 151.10+46.45
mmol/L 3.87+1.17 3.87+1.17
SD: Standart deviation, N/A: Not applicable, HDL: High-density lipoprotein, LDL: Low-density lipoprotein

Table 2. Description of model abbreviations according to data sets

Model Training set Test Set

Model-1 80% records of high-TG subjects only (group 1: 5.113) 20%

Model-2 100% records of high-TG subjects only (group 2: 19.599) 20%
80% records of high-TG subjects in hospital 1 and

Model-3 X ) ) } 20%
100% records of high-TG subjects in hostpital 2 (group 3: 27.712)
The number of n in the groups for each model

NIH-Equ-2 20%
(group 1: 5.113, group 2: 19.599, group 3: 27.712)

TG: Triglycerides, NIH-Equ-2: National Institutes of Health-Equ-2
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Lipid Profile Testing

ALl lipid profile parameters were analyzed using automated
chemistry analyzers: the Roche Cobas ¢702 in the
biochemistry laboratory of hospital 1 and the Beckman
Coulter AU5800 in the biochemistry laboratory of hospital 2.
Only the initial test results of each patient were considered
in the study; repeated measurements were excluded. TC
and TG were determined using the enzymatic cholesterol
esterase/oxidase and glycerol phosphate oxidase methods,
respectively.

HDL levels were measured using a direct homogeneous
assay that did not involve precipitation. LDL was quantified
using a direct homogeneous assay that employs a selective
protective agent to isolate LDL from chylomicrons, HDL, and
very LDL, with measurement by the cholesterol esterase/
oxidase method. The maximum allowable total error for
LDL based on these methodologies was 11.9%. The actual

total error rates recorded by the Roche c702 and Beckman
AU5800 analyzers were 9.48% and 8.67%, respectively. Since
both error rates were below the acceptable limit, the lipid
profile data were deemed reliable and suitable for the study.

ML Analysis

Python 3.9 was used as the primary programming language.
Data manipulation and analysis were performed using the
Pandas Library (version 1.4.4) in Python. NumPy (version
1.21.5),whichsupportsthehandlingoflarge, multidimensional
arrays and provides advanced mathematical functions for
array operations, was also used. ML models were developed
using the Scikit-learn (Sklearn) library, version 1.0.2. To
evaluate the contribution of individual features to model
predictions, SHapley Additive exPlanations (SHAP) analysis
was conducted. The SHAP library (version 0.42.1) was used
to measure feature importance, and the corresponding

Potentially cligible samples
(n=27094)
\ 4
itale ital-
Hospital-2 Hospital-1
Randomization (n=20690) Randomization (n=6404)
Excluded (n=12
Excluded (n=1091) . s;m;(alcs )includcd 00 or
e Samples included 2¢r0 or negative negative test values (n=5)
test values (ns946) ‘ o Samples included  with test
* Samples included with test results, results, not in numerical value
not in numerical value (n=145) (n=7)
¥ a3l *© 6.392valid sample.
Fassssnnnnnnnnn : - - — — -
v v
Training Set (n)

1. Group: 5113
2. Group: 19599 ——

Common Test Set (n=1279)

3. Group:24712 =

NIH-EQU-2°* Model-1 ** Model-2 ** Model-3 **
0,420 0,494 0,912 0,981
! l L ! "
Classification (n) Classification (n) Classification (n) Classification (n) Class w?,!,ﬁ 2"‘3‘,‘, MZ:'N
Class 1:9 Class 1:7 Class 1: 16 Class 1:16
Class 2:19 Class 2: 12 Class 2: 25 Class 2:23 ! e ¢
Class 3: 191 Class 3:96 Class 3:113 Class 3: 122 3 70.99 119
Class 4: 189 Class 4: 145 Class 4:130 Class 4:131 4 100-115 132
Class 5: 756 Class 5:807 Class $: 776 Class 5: 767 3 116189 766
Class 6: 115 Class 6:212 Class 6: 219 Class 6: 220 6 2190 221

Figure 1. The flow of the subjects through the study shown in standards for reporting diagnostic accuracy diagram

NIH-Equ-2: National Institutes of Health-Equ-2, LDL: Low-density lipoprotein
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SHAP graph for the LDL dataset is presented in Figure 2.
Additionally, the GradientBoost library (version 1.5.0) was
used to implement gradient boosting algorithms during
model training and testing. A detailed Lliterature search
identified previous LDL estimation algorithms®. Qur
selection of analysis methods is based on various reviews of
the use of the best combined ML algorithms that can detect
linear or non-linear relationships between independent and
dependent variables. Three ML algorithms (decision tree,
random forest, and gradient boosting) were used to test
linearity in the preprocessed data.

The linearity of the new dataset all-TG, obtained by
combining the hospital 1 and hospital 2 subsets, was also
verified. After verifying the linearity of the high-TG data set,
the high-TG analysis was considered a regression analysis,
and the prediction scores for LDL values from seven
individual ML algorithms were determined separately for
the three data sets (hospital 1, hospital 2, and all-TG). Next,
LDL values for patients at both hospitals were predicted
using a combination of the three algorithms described
above. The new models were constructed by stacking the
highest-performing algorithms: random forest, XGBoost,
and decision tree. Stacking is an ensemble ML technique
that combines multiple high-performing ML algorithms
to produce the highest-performing predictive model. Early
results indicated that the ensemble ML method using all-
TG improved predictions of LDL values and LDL-level
classification. Accordingly, the highest-performing random
forest and XGBoost models were used as base learners, and
the decision tree algorithm was stacked as the meta-learner
to produce a meta-model.

Total-Cholesterol: 26.05
Id: 9.85

NIH-Equ-2: 4.29
Trigliserid: 3.33

HDL: 2.54

Age: 1.26

Non-HDL: 1.23

Gender: 0.39

cen e s O RO

Hence, a new stacked ensemble model was designed in our
study. The untuned model was tested on the all-TG dataset
and was later tuned. Hyperparameter tuning is a technique in
ML model design used to achieve the highest final test scores
across all performance parameters. After hyperparameter
tuning, the highest-performing stacked ensemble ML model
(model-3) shown in Figure 3 was obtained. The start-up
model was model 1. Model 2 was obtained using only the
hospital 2 dataset. Model-1 is our previous p-LDL-M {2}
model in work®. The performances of all three models were
tested. Model-3's LDL prediction was tested on the all-TG
dataset to evaluate the effects of a larger dataset and model
improvements on predictive performance. The predicted LDL
values were placed into LDL-level classes in the final step,
as shown in Figure 3. During the above design and selection
processes, all key steps and recommendations of the IFFC for
developing a medical ML application were followed. Figure 3,
supported by the above-detailed explanations of our design's
architecture, meets the reproducibility recommendation of
IFFC.

Statistical Analysis

The measured direct LDL was accepted as the actual value.
The predicted and calculated LDL values were compared with
the actual LDL values. Statistical analyses were performed
using IBM® SPSS® Statistics 26 for Windows®. A paired t-test
was used to compare the means. Pearson's and Spearman's
correlation tests were performed to assess the association
between direct LDL and the predictions of the designed ML
models and the Sampson-NIH equation (hereafter referred to
as the NIH-Equ-2 method). Sometimes, the two correlations

| High

Feature value

~0-
_'f'
3
+.
+
g

Low
-100 -50 50 100

SHAP value (impact on model output)

Figure 2. SHAP graph of direct LDL dataset parametersfeatures
SHAP: SHapley Additive exPlanations, LDL: Low-density lipoprotein
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:Model Design

Train

Model Training
Stacked Ensemble

Random
Forest }
1 m

LDL Predictions
(Value-Class)

—————————— -
G || ey osenan
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Conditioned l g l Base models  Metamodel) ! _’6@ 55-69 mg/dL
o :
N : 70- d
N ;
“"4 ¢ _.‘@ 100-115 mg/dL
pre-processing 5] Prediction !
TTota @) —— @ 116189mg/aL

| —“@ >=190 mg/dL

Figure 3. The proposed highest-performing LDL prediction ML model-3 architecture

LDL: Low-density lipoprotein, ML: Machine-learning

disagree on the strength of the correlation between an
independent and dependent variable because of outliers®.
Therefore, we included both in our work to determine
whether such a disagreement existed. The present study
found no discrepancy between the Pearson and Spearman
correlation coefficient matrices; only minor differences, all
less than 1.000, were observed.

Statistical significance was set at p<0.05, and a Passing-
Bablok regression was conducted to determine the
agreement between the prediction models and the current
measurements. Bland-Altman plots were used to assess
systematic bias across different direct LDL concentrations. In
the Bland-Altman plots, differences between methods were
plotted against direct LDL measurements.

The LDL levels classification performance of the designed
models and the NIH-Equ-2 in classifying them was also
assessed in accordance with the 2019 ESC/EAS Guidelines.
Each subject's predicted or calculated LDL level class was
compared with the subject's actual LDL level class. One way
to measure and compare ML model performance is to report
precision, recall, balanced accuracy, F1 score, and specificity
for the model's predictions. The parameters used in the
calculations for the equations in our study are defined as
follows:

* True positive: The number of cases when the subject's LDL
class was correctly identified.

* False positive: The number of cases when the subject's LDL
class is incorrectly identified.

* True negative: The number of cases when the subjects out
of an LDL class are correctly identified (not applicable in our
study).

* False negative: The number of cases that subjects out of
an LDL class is incorrectly identified Cohen's Kappa statistic
was used to assess agreement between the designed models
and NIH-Equ-2 classifications. The Kappa result can be
interpreted as follows: values <0 indicating no agreement,
0.01-0.20 as none to slight, 0.21-0.40 as fair, 0.41-0.60 as
moderate, 0.61-0.80 as substantial, and 0.81-1.00 as almost
perfect agreement®,

Results

Basic Statistics Results

A correlation matrix of designed models, NIH-Equ-2, and the
actual direct LDL is given in Figure 4. The Figure shows that
all models and NIH-Equ-2 results are strongly correlated
with the exact values. However, the correlation for model-3
is exceptionally high (r=0.996). NIH-Equ-2's correlation with
the actual values is the lowest, at 0.862.

The analysis of the scatter correlation plots of the compared
methods (Figure 5) showed that the NIH-Equ-2 results were
scattered, and the R2 value was low (R2=0.7443). Model-3
produced the best results, with R? close to 1 (R?>=0.9923) and
low scatter. Interim model-2 exhibited a slightly high degree
of scatter, with an R? value of 0.9494.
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NIH-Equ-2

1.0000

Model-1 -SeAEL:]

Model-2 - 0.8803

Model-3 - 0.8648 0.8701

Direct-LDL - 0.8627 0.8672

1 1
NIH-Equ-2 Model-1

0.8803
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Model-2
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0.8648 0.8627
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- 0.92
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- 0.88
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Model-3 Direct-LDL

Figure 4. Correlation matrix of NIH-Equ-2, designed ML models and Direct LDL
NIH-Equ-2: National Institutes of Health-Equ-2, LDL: Low-density lipoprotein, ML: Machine-learning
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Figure 5. Scatter plots of correlations between predicted and direct LDL

A: NIH-Equ-2 vs. direct-LDL scatter graph, B: Model-1 vs. direct-LDL scatter graph, C: Model-2 vs. direct-LDL scatter graph, D: Model-3
vs. direct-LDL scatter graph, NIH-Equ-2: National Institutes of Health-Equ-2, LDL: Low-density lipoprotein

The receiver operating characteristic (ROC) curves for the six
classes predicted by model-3 are shown in Figure 6. The area
under the ROC curve (AUC) indicates the performance of a
model across all possible classification thresholds. A value
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greater than 0.9 is considered outstanding. Our ROC curves
showed a micro-averaged AUC of 97% across five classes.

The AUC for the non-critical class 3 was the lowest [89%; 95%
confidence interval (Cl), 8493%]. Therefore, the average AUC
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Model-3 Multi-Class ROC Curves
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Figure 6. ROC curve and PRC of model-3 class predictions
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indicates that our proposed model achieves good predictive
accuracy and precision across all classes. The average AUC
of the precision-recall curve is also satisfactory at 0.90 (95%
Cl, 0.86-0.93). However, the AUC of class 3 is the lowest at
0.74 (95% Cl, 0.71-0.77). Fortunately, class 3 is not the level at
which LDL underestimation is critical. The AUC for the class
4 critical LDL Llevel is high at 0.94 (95% Cl, 0.90-0.98).

The Bland-Altman plot of direct LDL and model-3 is given
in Figure 7. As observed, most measurements are above the
mean and fall within the 95% CIl. However, some values do
not fall within the 95% Cl, which requires an explanation. The
reason for the high number of outliers in the Cl is presented
in the next section.

Kappa scores (Table 3) were obtained by comparing the
actual LDL levels with the predicted and calculated LDL
levels. The lowest Kappa score was 0.420 for NIH-Equ-2's
LDL-level classification, while the highest was 0.981 for
model-3. These results indicate that the performance of
model 3 was best when data from hospital 1 and hospital 2
were combined.

Discussion

Our study aims to predict LDL levels in high-TG subjects.
Based on our literature review, this study is the second ML-
based study on high-TG subjects in Turkiye.

The categorical classification of patients’ LDL levels is as
important as the quantitative LDL value for guiding lipid-

lowering therapy. Clinicians apply various treatments,
from dietary changes and exercise to multidrug therapies,
depending on the patient's LDL level. Therefore, the LDL
values under study were categorized into classes according
to the 2019 ESC/EAS Guideline®. The data preparation,
model selection, design, and validation steps were completed
in accordance with the IFFC recommendations. The most
important findings of our research are discussed below.

As illustrated in Figure 1, class 1 (0-54 mg/dL) had the
lowest number of cases, whereas class 5 (116-189 mg/dL)
had the highest (766 cases). The mean values of the datasets
play a crucial role in representing the characteristics of the
studied population. Upon examining the Lipid profiles of the
individuals included in our research, it was observed that
the average TC, TG, and LDL levels were elevated, whereas
average HDL levels were comparatively low compared
with similar ML studies®!. These discrepancies may be
attributed to the dietary patterns prevalent in our country.
Nevertheless, with the exception of TG levels, the lipid values
reported by the NIH in the multicenter study by Sampson
et al. " were largely consistent with ours. In contrast, the
other four centers reported lower lipid values than those in
our study.

In prior studies focused on low-TG LDL prediction, random
forest has been the most commonly used ML algorithm.
However, alternative approaches such as XGBoost, deep
neural networks, support vector machines, linear regression,
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Figure 7. Bland-Altman plot between direct LDL and model-3
LDL: Low-density lipoprotein, SD: Standard deviation

Table 3. Model-1, model-2, model-3, and NIH-Equ-2

predicted Kappa scores of direct

Model/formula Cohen's Kappa score

NIH-Equ-2 0.420?

Model-1 0.494¢

Model-2 0.912°

Model-3 0.981°

& Moderate aggrement: ® Almost perfect aggrement, NIH-Equ-2: National
Institutes of Health-Equ-2

and k-nearest neighbors have also been employed®®,
In the present study, the stacked ensemble ML model-3
demonstrated superior performance and yielded the most
accurate predictions.

Model 3 yielded several noteworthy findings. When its
predictions were compared with direct LDL measurements,
model-3 demonstrated the highest accuracy and
correlation coefficients and the lowest error rates (mean
absolute error, mean squared error, mean absolute
percentage error). Notably, the best performance was
achieved using the full all-TG dataset rather than the high-
TG subset. When the entire dataset, including calculated
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LDL values, was utilized, model-3's prediction performance
improved by 12.90% compared with predictions based
solely on the high-TG group. Additionally, classification
of LDL levels exhibited superior accuracy and minimal
variability when using the all-TG dataset. Model-3
also outperformed the well-established NIH-Equ-2
method, showing a 13.45% improvement margin.
These findings highlight the advantage of combining data
from hospital 1 and hospital 2 to enhance LDL estimation.
Moreover, the study confirms the following:

e The previously known strong correlations between TC,
non-HDL, and direct LDL.

* The strong performance of NIH-Equ-2 in calculating LDL.
* The success of ML in estimating LDL values.
e The linear relationship between TG and LDL.

Model-3-predicted results and direct LDL measurements
were significantly correlated (r=0.996). The algorithm
results of Anudeep et al.” and Singh et al.”” were also
significantly associated with the direct-LDL measurements
(0.98 and 0.982). The more robust correlation results
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in independent studies indicate that ML algorithms and
ensemble techniques can predict LDL values better than
previously developed formulae®?.

Another interesting result was the difference between NIH-
Equ-2 mean and the direct LDL mean (136.12+39.38 and
148.80+44.42 mg/dL, respectively). The relatively large
difference was disappointing. In contrast, the mean value
obtained in model 3 did not differ significantly. Our model-
3's superior statistical performance was further supported
by higher precision, recall, balanced accuracy, F1 score, and
specificity.

The resulting SHAP graph is shown in Figure 2. TC was the
most impactful feature in our SHAP graph (Figure 2). The
impact of TC was validated by the highest Pearson correlation
value, 0.844, in Figure 8. There was also a high correlation
between TC and direct-LDL in the study by Chen et al.®.

Beyond TC, the SHAP summary plot revealed that TG and
non-HDL cholesterol made substantial positive contributions
to the prediction of LDL, reflecting the well-known metabolic
coupling between TG-rich lipoproteins and LDL particles.
HDL-C exerted a mild inverse effect, consistent with its
protective role in reverse cholesterol transport. Age showed
a modest positive effect, whereas sex contributed minimally,
likely because lipid distributions were similar between
sexes in the dataset. These findings support the biological
plausibility of the model outputs.

The scatter plot of model-3 results in Figure 5 shows that our
model results are almost linear, in contrast to the scattered
results of NIH-Equ-2. Model-3's p-value (Figure 5 4.27%)
is lower than the %5.46 of desirable biological variation
database specifications for the LDL cholesterol®. Our scatter
performance is also consistent with Anudeep et al.” low-
scatter study. Our study also agreed with Anudeep et al.”
find that different formulae can produce negative results,
even though their correlation values (r) vary between 0.89
and 0.94.

The R2 value of model-3 in our study was comparable to, yet
slightly higher than, the R? reported in the study by Chen et
al." In the research conducted by Kim et al."® where the
XGBoost method-also employed in our study-was applied
consecutively, the R? value was relatively high but still
moderately lower than that achieved by our model.

Extensive evidence from epidemiological studies, Mendelian
randomization analyses, and randomized controlled trials
has established a log-linear association between LDL levels

and ASCVD. Consequently, clinical guidelines consistently
emphasize lipid-lowering therapies as essential for
improving ASCVD-related outcomes. The effectiveness of
these interventions is supported by foundational scientific
research, clinical data, genetic studies, randomized trials,
and population-based analyses*®. Furthermore, LDL
concentrations directly inform the selection and dosage of
cholesterol-lowering treatments. One study, for instance,
reported that each 1 mmol/L reduction in LDL was associated
with a 20% decrease in major cardiovascular events,

Previous studies have shown that traditional predictive
models and formulae exhibit greater error rates at lower
LDL concentrations (<70 mg/dL). In contrast, our model-3
achieved a classification error rate of just 4.8% (2 out of 41) in
this range (Table 4), outperforming the Weill-Cornell model,
which had an error rate of 7.5%. Similar performance was
observed in the study by Cubukcu and Topcu®™ although it is
important to note that their cohort consisted of patients with
TG levels between 177 and 399 mg/dL". Based on the 2019
ESC/EAS Guidelines, our model exhibited a 3.4% (4/119)
classification error across the first three LDL categories
(LDL <100 mg/dL). For comparison, error rates were 43.75%
(77/176) for the NIH-Equ-2 formula, 11.4% (143/1254) for the
Weill-Cornell model, and 3.47% (53/1528) for the model by
Anudeep et al.” In the study by Barakett-Hamade et al.®
LDL values were categorized into three groups, with the
lowest group defined as <80 mg/dL. The misclassification
rate for this category was 12.5% (793/6327).

It is well established that elevated LDL levels contribute
significantly to morbidity and mortality among patients
with cardiovascular disease; intensive hyperlipidemia
management has been shown to improve quality of life,
particularly in patients who are over-classified??, A
correct or slightly higher classification of LDL levels (over-
classification) ensures that patients receive appropriate or
more aggressive treatment regimens. In our study, model 3
occasionally overclassified LDL levels by one category (Table
4). However, we argue that this slight overestimation poses
minimal clinical risk, as it would lead to intensified treatment,
which is generally safer than the risk of undertreatment®?,
Notably, therapies such as ezetimibe and monoclonal
antibodies, when added to statin-based treatment, effectively
reduce LDL levels and improve cardiovascular outcomes
and overall survival. Studies have shown that inclusion of
ezetimibe lowers the risk of cardiovascular events without
increasing adverse effects or toxicity, even in patients with
acute coronary syndromes or with already optimal LDL
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Table 4. Results of classifications by model-3 (n=1279)

Model-3 class Direct LDL class

1 2 4 5 6 Total
1 16 0 0 0 0 16
2 0 23 0 0 0 23
3 0 117 2 1 0 122
4 0 0 1 128 2 0 131
5 0 1 2 762 2 767
6 0 0 0 1 219 220
Total direct LDL 16 25 119 132 766 221 1279
LDL: Low-density Lipoprotein

levels. Moreover, there is currently no evidence suggesting
harm from adding ezetimibe in cases with moderate LDL
concentrations®?). In contrast, under-classification may
have more serious consequences, such as misclassifying
a high-risk patient from class 5 to class 4, resulting in
inadequate treatment. Importantly, the under-classification
rate of model 3 was remarkably low-only 0.39% (three of
766 cases).

Lipid-lowering therapies impose a considerable financial
burden on healthcare systems globally®. Although beta-
quantification is considered the reference standard for LDL
measurement, it is not feasible for routine clinical use due to
its high cost and labor intensity®., As a result, enzymatic and
homogeneous immunoassay methods have largely replaced
it. Following the establishment of correlations between
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LDL and other lipid fractions, direct LDL measurement
techniques were gradually replaced by calculation-based
methods such as the Friedewald, Martin-Hopkins, and NIH-
Equ-2 formulae. Each of these approaches offers distinct
advantages. For instance, whereas combined hospital
datasets perform well when TG levels exceed 400 mg/
dL, NIH-Equ-2 can extend its calculations up to 800 mg/
dL. Notably, the Martin-Hopkins method utilizes variable
adjustment factors tailored to TG levels, allowing for accurate
estimations even in non-fasting individuals®. To overcome
the limitations of traditional formulae, recent studies have
shifted focus toward ML-based LDL prediction models.
Based on our literature review, this study is the second to
use ML algorithms to predict LDL levels in patients with TG
>400 mg/dL, following our initial publication. This makes
our work particularly relevant in clinical settings where
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precise LDL classification is crucial for initiating appropriate
therapeutic interventions®. The effectiveness of our model
is further validated by its Kappa score, a statistical measure
of classification agreement. Model-3 achieved a Kappa
score of 0.981, significantly outperforming the NIH-Equ-2
formula, which had a Kappa score of 0.420. These results
indicate that model-3 is in "almost perfect agreement” with
direct LDL measurements, whereas NIH-Equ-2 falls under
the category of "moderate agreement"”. Although numerous
studies endorse the reliability of NIH-Equ-2 for LDL
estimation?, it is important to note that NIH-Equ-2 was
calibrated against LDL values derived from the reference
beta-quantification technique. In contrast to many existing
studies, our research utilized results from two distinct auto-
analyzer platforms. Therefore, variations in accuracy may
stem from differences in analytical methods, ML models, or
the analyzers themselves®.

The number of predictions deviating from the mean in the
Bland-Altman plot comparing direct LDL and model-3
was high. The highest number deviation is observed in
classes 5 and 6 (Figure 7). The large numbers in both
classes are due to the very wide range of class 5 (116-189)
and the open-ended range of class 6 (>190). The number
of deviations from the acceptable region for the critical
class 4 is four. The percentage of undesired predictions is
negligible, with 4 instances out of 1279 total predictions,
i.e., 0.31%.

The recommendations of the IFCC Working Group® have been
followed carefully in our present work. In the last stage, the
prediction results for the same high-TG patients were used
to cross-validate the final model's reliability. Thus, we can
now claim the model's applicability to data from different
hospitals. We believe that our work will increase acceptance
of ML in MAI applications and pave the way for future real-
world applications.

Study Limitations

Our study has some limitations. First, because our data
were retrospective and beta-quantification is not used
in routine laboratory practice, the more commonly used
direct homogeneous immunoassay was employed. In this
study, LDL-C values were obtained using a commercial
homogeneous direct assay. However, previous studies
have shown that homogeneous LDL-C methods can
overestimate LDL-C levels by 7-12% compared to the beta-
quantification®®. This discrepancy is particularly pronounced
in hypertriglyceridemic individuals (TG > 400 mg/dL), where

cholesterol from very LDL and intermediate DL fractions
may be mistakenly included in LDL-C measurements. As a
result, the LDL-C values used for training our model may
contain a systematic bias. Future studies should validate
the model using beta-quantification-based reference data
or incorporate an adjustment to account for potential
measurement bias in homogeneous LDL-C assays. Secondly,
the effects of diseases that may influence the lipid profiles
could not be assessed independently because of the study's
retrospective design. Third, sub-categorization of ethnic
groups could not be performed. Since the target range was
TG >400 mg/dL, TG values could not be subcategorized or
analyzed in detail.

Conclusion

An MAI application that fully complied with the IFFC
recommendations for predicting LDL using ensemble ML
methods was presented. Performance results indicate that
our newly designed ML estimation model, model-3, for
predicting target high-TG values outperforms the NIH-
Equ-2 formula and our previous model. Our work can be
included in the routine Llipid profile without changing the
main principles and methods if similar work is planned as
a multicenter study, enriched with data from different races,
and expanded to include multiple autoanalyzers.

Ethics

Ethics Committee Approval: Before commencing the
study, the necessary approval was obtained from the Non-
Interventional Ethics Committee of University of Health
Sciences Turkiye, izmir Tepecik Education and Research
Hospital, (approval no: 2023/13-23, date: 12.04.2023)
and Non-Interventional Ethics Committee of Dokuz Eylul
University Faculty of Medicine (approval no: 2023/20-04,
date: 14.06.2023).

Informed Consent: Retrospective design.
Footnotes

Authorship Contributions

Surgical and Medical Practises: F.D, M.E, 0.G.D., PA,
Concept: F.D., M.E,, M.H.O., PA, Design: F.D., M.E, M.H.0,,
0.G.D., PA., Data Collection or Processing: F.D., M.E., 0.G.D,,
Analysis or Interpretation: F.D., M.E.,, M.H.0., 0.G.D., Literature
Search: F.D., M.E, M.H.0., 0.G.D., PA., Writing: F.D., M.E.

Conflict of Interest: No conflict of interest was declared by
the authors.

319



Anatol J Gen Med Res 2025;35(3):307-320

One of the authors of this article (F.D.) is @ member of the
Editorial Board of this journal. He was completely blinded to
the peer review process of the article.

Financial Disclosure: The authors declared that this study
received no financial support.

References

1

10.

11.

12.

13.

14.

320

Davenport T, Kalakota R. The potential for artificial intelligence in
healthcare. Future Healthc J. 2019;6:94-8.

Park SH, Choi J, Byeon JS. Key principles of clinical validation, device
approval, and insurance coverage decisions of artificial intelligence.
Korean J Radiol. 2021;22:442-53.

Master SR, Badrick TC, Bietenbeck A, Haymond S. Machine learning in
laboratory medicine: recommendations of the IFCC Working Group. Clin
Chem. 2023;69:690-8.

Demirci F, Emec M, Gursoy Doruk O, Ormen M, Akan P, Hilal Ozcanhan
M. Prediction of LDL in hypertriglyceridemic subjects using an
innovative ensemble machine learning technique. Turkish Journal of
Biochemistry. 2024;48:641-52.

Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for
the management of dyslipidaemias: lipid modification to reduce
cardiovascular risk. Eur Heart J. 2020;41:111-88.

McHugh ML. Interrater reliability: the Kappa statistic. Biochem Med
(Zagreb). 2012;22:276-82.

Anudeep PP, Kumari S, Rajasimman AS, Nayak S, Priyadarsini P.
Machine learning predictive models of LDL-C in the population of
eastern India and its comparison with directly measured and calculated
LDL-C. Ann Clin Biochem. 2022;59:76-86.

Barakett-Hamade V, Ghayad JP, Mchantaf G, Sleilaty G. Is machine
learning-derived low-density Llipoprotein cholesterol estimation
more reliable than standard closed form equations? Insights from a
laboratory database by comparison with a direct homogeneous assay.
Clin Chim Acta. 2021;519:220-6.

Singh G, Hussain Y, Xu Z, et al. Comparing a novel machine learning
method to the Friedewald formula and Martin-Hopkins equation for
low-density lipoprotein estimation. PLoS One. 2020;15:e0239934.

Hidekazu I, Nagasawa H, Yamamoto Y, et al. Dataset dependency of low-
density lipoprotein-cholesterol estimation by machine learning. Ann
Clin Biochem. 2023;60:396-405.

Cubukgu HC, Topcu Di. Estimation of low-density Lipoprotein cholesterol
concentration using machine learning. Lab Med. 2022,;53:161-71.

Sampson M, Ling C, Sun Q, et al. A new equation for calculation of low-
density lipoprotein cholesterol in patients with normolipidemia and/or
hypertriglyceridemia. JAMA Cardiol. 2020;5:540-8.

Atabi F, Mohammadi R. Clinical validation of eleven formulas for
calculating LDL-C in Iran. Iran J Pathol. 2020;15:261-7.

Chen L, Rong C, Ma P, Li Y, Deng X, Hua M. A new equation for estimating
low-density lipoprotein cholesterol concentration based on machine
learning. Medicine (Baltimore). 2024;103:e37766.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Westgard J. Desirable biological variation database specifications.
Available  from: https://www.westgard.com/clia-a-quality/quality-
requirements/238-biodatabasel.html

Kim Y, Lee WK, Lee W. Prediction of Low-density lipoprotein cholesterol
levels using machine learning methods. Lab Med. 2024;55:471-84.

Writing Committee; Lloyd-Jones DM, Morris PB, et al. 2022 ACC
expert consensus decision pathway on the role of nonstatin therapies
for LDL-cholesterol lowering in the management of atherosclerotic
cardiovascular disease risk: a report of the American College of
Cardiology Solution Set Oversight Committee. J Am Coll Cardiol.
2022;80:1366-418. Erratum in: J Am Coll Cardiol. 2023;81:104.

Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines
for the management of dyslipidaemias. Eur Heart J. 2016;37:2999-3058.

Cholesterol Treatment Trialists' (CTT) Collaboration; Baigent C,
Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL
cholesterol: a meta-analysis of data from 170,000 participants in 26
randomised trials. Lancet. 2010;376:1670-81.

Emerging Risk Factors Collaboration; Di Angelantonio E, Gao P, et al.
Lipid-related markers and cardiovascular disease prediction. JAMA.
2012;307:2499-506.

Ference BA, Yoo W, Alesh |, et al. Effect of long-term exposure to lower
low-density lipoprotein cholesterol beginning early in life on the risk of
coronary heart disease: a Mendelian randomization analysis. J Am Coll
Cardiol. 2012;60:2631-9.

Sathiyakumar V, Blumenthal RS, Elshazly MB: New information on
accuracy of LDL-C estimation. American College of Cardiology. March
20. 2020. (Accessed: March 27, 2024). Available from: https://www.acc.
org/latest-in-cardiology/articles/2020/03/19/16/00/new-information-
on-accuracy-of-ldl-c-estimation

Oyama K, Giugliano RP, Blazing MA, et al. Baseline low-density
lipoprotein cholesterol and clinical outcomes of combining ezetimibe
with statin therapy in IMPROVE-IT. J Am Coll Cardiol. 2021;78:1499-507.

Koskinas KC, Siontis GCM, Piccolo R, et al. Effect of statins and non-
statin LDL-lowering medications on cardiovascular outcomes in
secondary prevention: a meta-analysis of randomized trials. Eur Heart
J. 2018;39:1172-80.

Michaeli DT, Michaeli JC, Boch T, Michaeli T. Cost-effectiveness of
lipid-lowering therapies for cardiovascular prevention in Germany.
Cardiovasc Drugs Ther. 2023;37:683-94.

Contois JH, Langlois MR, Cobbaert C, Sniderman AD. Standardization
of apolipoprotein B, LDL-cholesterol, and Non-HDL-cholesterol. J Am
Heart Assoc. 2023;12:e030405.

Sampson M, Wolska A, Meeusen JW, Otvos J, Remaley AT. The Sampson-
NIH Equation is the preferred calculation method for LDL-C. Clin Chem.
2024;70:399-402.

Yano M, Matsunaga A, Harada S, et al. Comparison of two homogeneous
LDL-cholesterol assays using fresh hypertriglyceridemic serum and
quantitative ultracentrifugation fractions. J Atheroscler Thromb.
2019;26:979-88.



