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Abstract

Öz 

Objective: Direct measurement of low-density lipoprotein cholesterol (LDL-C) is time-consuming and expensive when triglycerides (TG) exceed 400 mg/dL. 
We sought to validate and refine a machine-learning (ML) model for rapid estimation of LDL-C in hypertriglyceridemic sera.

Methods: We extracted 25.991 lipid profiles (TG: 400-800 mg/dL) collected between 2010 and 2022 from two Turkish university hospitals. After an 80/20 
split, seven ML algorithms were trained; the top two (random forest and XGBoost) were stacked with a decision tree meta-learner (model-3). Performance 
on the external test set (n=1.279) was compared with that of direct homogeneous LDL-C assays and the Sampson's formula (NIH-Equ-2) using balanced 
accuracy, precision, recall, F1 score, specificity, Pearson correlation coefficient, and Bland-Altman analysis, following International Federation of Clinical 
Chemistry and Laboratory Medicine analytical performance specifications.

Results: Model-3 yielded balanced accuracy =99.3%, precision =98.9%, recall =98.9%, and specificity =99.8%. Predicted LDL-C correlated strongly with 
direct measurement (r=0.996, p<0.001) and reduced the mean absolute error by 54% compared with NIH-Equ-2. Only 0.39% of cases were underclassified 
relative to the European Society of Cardiology/European Atherosclerosis Society LDL-C risk categories. Bland-Altman plots demonstrated no significant 
proportional bias across the LDL-C range (mean bias =-0.2 mg/dL; 95% limits of agreement: -7.8 to+7.4 mg/dL).

Conclusion: A stacked ensemble ML model delivers near-assay accuracy for LDL-C prediction in high-TG samples and markedly outperforms current 
formula. Implementation could enable same day, low-cost LDL-C reporting without extra laboratory procedures, supporting faster dyslipidaemia 
management.

Keywords: LDL, lipid profile, machine-learning, artificial intelligence

Amaç: Trigliserid (TG) düzeyi 400 mg/dL’nin üzerine çıktığında düşük yoğunluklu lipoprotein kolesterol (LDL-K) ölçümü zaman alıcı ve maliyetli hale 
gelmektedir. Bu çalışmada, hipertrigliseridemik serumlarda hızlı LDL-K tahmini için geliştirilen makine öğrenmesi (ML) modelinin doğrulanması ve 
iyileştirilmesi amaçlandı.
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Introduction
Artificial intelligence (AI) applications in medicine have 
become increasingly widespread. Machine-learning (ML) 
developments have been widely adopted in medical AI (MAI) 
applications. The growth of MAI is due to the ever-increasing 
abundance of health data, the primary input for ML. 
Interest in MAI stems from its ability to generate diagnostic 
predictions from complex datasets. The MAI prediction and 
visualization applications have produced fast and accurate 
results in solving many medical problems(1).

However, dataset size is not the only driving force behind 
MAI. The number, variety, and accuracy of input data that 
are directly related to the output significantly influence the 
success of results produced by the designed ML models. 
Therefore, the data are expected to include all information 
related to the research output. In computer science, 
supervised ML (i.e., controlled ML) is currently the most 
widely used tool in MAI.

Computer algorithms such as computer-aided diagnosis 
or clinical decision support systems used for supporting 
diagnosis, decision-making, and prediction are classified as 
diagnostic devices(2). The methods for clinical validation and 
development are similar to those for standard diagnostic 
tests. Therefore, medical devices used in MAI applications 
must undergo rigorous clinical and experimental validation 
before use in patients to ensure patient safety and the 
efficacy of the method. Additionally, the reproducibility of the 
ML prediction results is a major concern of the International 
Federation for Clinical Chemistry and Laboratory Medicine 
(IFFC)(3).

The MAI applications used for clinical validation vary 
according to their form, model, and function. Our work aims 
to rapidly predict patients’ low-density lipoprotein (LDL) 
levels prior to the costly and delayed direct measurement. 
The present work aims to validate and improve our previous 
“LDL predictor model” (p-LDL-M {2}) designed for LDL 
prediction in patients with 400≤ triglyceride (TG) ≤ 800 mg/
dL (abbreviated as high-TG for the rest of the article)(4). Our 
ultimate goal is to recommend an improved MAI application 
for the research community. Although different models 
were tested in this work, our present and previous data were 
obtained from similar models of testing devices. In other 
words, there is no data discrepancy.

The design and validation of generalized, reproducible, and 
improved p-LDL-M models is a five-step iterative process. 
The steps involve formulating the problem, collecting 
and preparing the data, validating and selecting a model, 
and interpreting and finally implementing the model. The 
improved target model is obtained after identifying the 
model with the best performance. Finally, optimization 
and feature selection techniques are applied to further 
enhance the performance of the developed model. However, 
the performance results of interim models have not been 
included in the results section to save space and avoid 
repeating noncritical results.

LDL-C concentration is the principal target for lipid-
lowering therapy and a key determinant of atherosclerotic 
cardiovascular disease (ASCVD) risk, as emphasized by 
recent European Society of Cardiology (ESC)/European 
Atherosclerosis Society (EAS) and American College of 
Cardiology/American Heart Association Guidelines. However, 

Öz 

Yöntem: 2010-2022 yılları arasında iki üniversite hastanesinden elde edilen 25,991 lipid profili (TG: 400-800 mg/dL) retrospektif olarak incelendi. Veriler 
%80/20 oranında ayrıldıktan sonra yedi ML algoritması eğitildi; en iyi iki algoritma (random forest, XGBoost), karar ağacı tabanlı bir meta-öğrenici ile 
birleştirilerek (model-3) istiflendi. Dış test setinde (n=1.279) modelin performansı doğrudan homojen LDL-K testleri ve Sampson formülüyle (NIH-Equ-2) 
karşılaştırıldı. Değerlendirmede dengeli doğruluk, kesinlik, duyarlılık, F1 skoru, özgüllük, Pearson korelasyonu ve Bland-Altman analizi kullanıldı; 
Uluslararası Klinik Kimya ve Laboratuvar Tıbbı Federasyonu analitik performans kriterleri dikkate alındı.

Bulgular: Model-3, dengeli doğruluk %99,3; kesinlik %98,9; duyarlılık %98,9 ve özgüllük %99,8 elde etti. Tahmin edilen LDL-K ile doğrudan ölçüm arasında 
güçlü korelasyon saptandı (r=0,996, p<0,001). Model, NIH-Equ-2 formülüne göre ortalama mutlak hatayı %54 azalttı. Avrupa Kardiyoloji Derneği/Avrupa 
Ateroskleroz Derneği LDL-K risk kategorilerine göre yanlış sınıflandırma oranı yalnızca %0,39 idi. Bland-Altman analizinde anlamlı orantısal yanlılık 
gözlenmedi (ortalama fark =-0,2 mg/dL; %95 güven aralığı, -7,8 ile +7,4 mg/dL).

Sonuç: Yığılmış topluluk ML modeli, yüksek TG düzeylerinde LDL-K tahmininde doğrudan testlere yakın doğruluk sağlamış ve mevcut formüllerden belirgin 
olarak üstün bulunmuştur. Modelin uygulanması, ek laboratuvar işlemleri olmadan aynı gün, düşük maliyetli LDL-K raporlamasına olanak tanıyabilir ve 
dislipidemi yönetiminde hız kazandırabilir.

Anahtar Kelimeler: LDL, lipid profili, makine öğrenmesi, yapay zeka
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the reliability of conventional LDL-C estimation equations is 
limited under hypertriglyceridemic conditions (TG >400 mg/
dL). The Friedewald formula becomes invalid, the Martin-
Hopkins method underestimates LDL-C in low LDL-C ranges, 
and even the National Institutes of Health (NIH)-Equ-2 
method may introduce bias at very high-TG levels. Therefore, 
developing a robust ML-based estimation method is essential 
for precise LDL-C assessment in these patients.

The main aim of this study was to develop and validate a 
reliable ML-based model capable of predicting LDL-C levels 
in patients with hypertriglyceridemia (TG >400 mg/dL) before 
the costly and delayed laboratory measurements.

Materials and Methods

Study Design

Before commencing the study, the necessary approval was 
obtained from the Non-Interventional Ethics Committee 
of University of Health Sciences Türkiye, İzmir Tepecik 
Education and Research Hospital, (approval no: 2023/13-
23, date: 12.04.2023) and Non-Interventional Ethics 
Committee of Dokuz Eylul University Faculty of Medicine 
(approval no: 2023/20-04, date: 14.06.2023). This study was 
first conducted at the University of Healt Sciences Türkiye, 
Dr. Suat Seren Chest Diseases and Chest Surgery Training 
and Research Hospital (hospital 1) and at the Dokuz Eylül 
University Research and Application Hospital (hospital 2) 
as the validation and improvement phase of the first phase. 
All experiments on humans were conducted according to 
relevant ethical guidelines and regulations. The experiments 
followed protocols approved by the Ethics Committees 
of hospital 1 and hospital 2. All experimental protocols 
used in this study have been reviewed and approved by 
the relevant institutional and/or licensing committee. The 
study’s participants are three healthcare scientists and two 
engineering scientists from four institutions. The participants 
comply with the first recommendation to involve diverse 
stakeholders in developing clinically useful, practical, and 
ethical models. A total of 6.404 patient records with high-
TG levels were presented in the hospital 1 biochemistry 
laboratory(4). The hospital 2 biochemistry laboratory 
maintains records for 20.690 high-TG patients. During data 
analysis, records were omitted if they had missing results for 
total cholesterol (TC), TG, high-density lipoprotein (HDL), or 
LDL; if results exceeded the linear limits of specific analysis 
methods; if they contained zero or negative values; if they 
were from patients younger than 18 years of age; or if they 
lacked numerical data.

Of 27.094 patient records across the two hospitals, only 
25.991 high-TG patient records (6.392 from hospital 1 and 
19.599 from hospital 2) were processed using Python® 
software (Wilmington, Delaware, USA). As a rule of thumb 
in ML design and testing, the dataset was split into three 
training subsets (80% of all TG records, all-TG) and three 
testing subsets (20% of each dataset). Training and testing 
were conducted using nine combinations of datasets and 
three ML models. The study results are valid only for patients 
with high-TG levels. The TC, HDL, LDL, and TG were analyzed 
using Roche Cobas c702 (Mannheim, Germany) and Beckman 
Coulter AU5800 (California, USA) automated analyzers at 
hospital 1 and hospital 2, respectively. Our training and test 
sets were completely independent, meaning no test data was 
used in training the models. In addition, no data that would 
be unavailable during actual use were used; i.e., there was 
no data leakage in our analysis. With no data leakage and 
an 80:20 independent training-test split, our sample sets 
comply with the IFFC recommendations.

Study Population/Subjects

Our study population consisted of 6.392 lipid profile results 
obtained between January 2010 and December 2022 at 
hospital 1 and 19.559 results obtained between August 2011 
and July 2022 at hospital 2. Standardized lipid profile data 
collected from the laboratory database included TC, TG, 
HDL, and LDL levels that were measured on the same day. 
Table  1  shows the main characteristics of the two high-TG 
study populations.

At hospital 1, 3.431 cases were male and 2.961 were female. 
The mean age of men was 49.72 years, while the mean age 
of women was 54.07 years. The mean directly measured LDL 
was 149.76±45.28 mg/dL. At hospital 2, 16.638 cases were 
male 2.961 were female. The mean ages were 56.81 years for 
men and 54.06 years for women. The mean measured direct 
LDL level was 151.10±46.44 mg/dL. Figure 1 displays the 
standard diagram used for reporting diagnostic accuracy, 
illustrating the progression of subjects throughout the study. 
Participants were divided into two datasets for statistical 
evaluation and ML analysis. The first dataset, typically 
comprising 80% of the participants, was used as the training 
set, while the remaining 20% formed the test set. In ML, the 
training set is utilized to build predictive models, and the test 
set is used to assess the prediction accuracy of those models.

Table 2 shows that the training set was divided into three 
groups. The first group (n=5113) contains direct LDL data 
from hospital 1 with TG levels >400 mg/dL. The second 



310

Anatol J Gen Med Res 2025;35(3):307-320

group (n=19.599) contains hospital 2 direct LDL data with 
TG >400 mg/dL. The third group (n=24.712) comprises the 
combined direct LDL data from hospital 1 and hospital 2 for 
cases with TG levels >400 mg/dL. In the designed ML models, 
the training set of model-1 (the model most similar to our 
previous p-LDL-M {2} model) included only the first group 
of data, while model-2 used only the second data group. 
Model-3 was trained using the sum of the training sets(4). It 
should be pointed out that the ML models also differ in their 
AI architectures.

To ensure unbiased comparability, the test set is the same 
for all three models: 20% of the hospital 1 data. The test set 
had to be from hospital 1 because testing newly designed 
models with a new training and test set from hospital 2 

could have been misleading by eliminating cross-hospital 
prediction

The LDL level distribution of the 1279 test subjects is shown 
in Figure  1. The classification is based on the 2019 ESC/
EAS Guidelines for managing dyslipidemia(5). The most 
undesirable error in LDL level classification is assigning a 
patient to an LDL level below the actual classification (under-
classification). Therefore, preventing under-classification 
was one of the primary objectives of the new model designs. 
The above properties of the study population indicate full 
compatibility with the sample size, race, gender, data 
diversity, and train-test set partitioning recommendations of 
IFFC.

Table 1. Characteristics of the study population

Characteristics Units
Hospital 1: n=6.392 
value ± SD

Hospital 2: n=19.599 
value ± SD

Age  51.73±11.61 56.39±13.75

Male years 49.72±11.20 56.81±14.05

Female years 54.07±11.61 54.06±11.65

Sex

Male N/A 3431 (%53.7) 16638 (%84.9)

Female N/A 2961 (%46.3) 2961 (%15.1)

Total cholesterol mg/dL 243.16±52.79 248.46±57.82

  mmol/L 6.29±1.37 6.45±1.50

Triglycerides mg/dL 510.98±96.71 509.33±97.13

  mmol/L 5.77±1.09 5.79±1.10

HDL mg/dL 37.57±8.97 40.51±11.17

  mmol/L 0.97±0.23 0.92±0.21

Non-HDL cholesterol mg/dL 205.62±48.12 207.96±51.30

  mmol/L 5.32±1.24 5.32±1.24

Direct LDL mg/dL 149.76±45.28 151.10±46.45

  mmol/L 3.87±1.17 3.87±1.17
SD: Standart deviation, N/A: Not applicable, HDL: High-density lipoprotein, LDL: Low-density lipoprotein

Table 2. Description of model abbreviations according to data sets

Model Training set Test Set

Model-1 80% records of high-TG subjects only (group 1: 5.113) 20%

Model-2 100% records of high-TG subjects only (group 2: 19.599) 20%

Model-3
80% records of high-TG subjects in hospital 1 and 

100% records of high-TG subjects in hostpital 2 (group 3: 27.712)
20%

NIH-Equ-2
The number of n in the groups for each model 

(group 1: 5.113, group 2: 19.599, group 3: 27.712)
20%

TG: Triglycerides, NIH-Equ-2: National Institutes of Health-Equ-2
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Lipid Profile Testing

All lipid profile parameters were analyzed using automated 
chemistry analyzers: the Roche Cobas c702 in the 
biochemistry laboratory of hospital 1 and the Beckman 
Coulter AU5800 in the biochemistry laboratory of hospital 2. 
Only the initial test results of each patient were considered 
in the study; repeated measurements were excluded. TC 
and TG were determined using the enzymatic cholesterol 
esterase/oxidase and glycerol phosphate oxidase methods, 
respectively.

HDL levels were measured using a direct homogeneous 
assay that did not involve precipitation. LDL was quantified 
using a direct homogeneous assay that employs a selective 
protective agent to isolate LDL from chylomicrons, HDL, and 
very LDL, with measurement by the cholesterol esterase/
oxidase method. The maximum allowable total error for 
LDL based on these methodologies was 11.9%. The actual 

total error rates recorded by the Roche c702 and Beckman 
AU5800 analyzers were 9.48% and 8.67%, respectively. Since 
both error rates were below the acceptable limit, the lipid 
profile data were deemed reliable and suitable for the study.

ML Analysis 

Python 3.9 was used as the primary programming language. 
Data manipulation and analysis were performed using the 
Pandas Library (version 1.4.4) in Python. NumPy (version 
1.21.5), which supports the handling of large, multidimensional 
arrays and provides advanced mathematical functions for 
array operations, was also used. ML models were developed 
using the Scikit-learn (Sklearn) library, version 1.0.2. To 
evaluate the contribution of individual features to model 
predictions, SHapley Additive exPlanations (SHAP) analysis 
was conducted. The SHAP library (version 0.42.1) was used 
to measure feature importance, and the corresponding 

Figure 1. The flow of the subjects through the study shown in standards for reporting diagnostic accuracy diagram

NIH-Equ-2: National Institutes of Health-Equ-2, LDL: Low-density lipoprotein
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SHAP graph for the LDL dataset is presented in Figure 2. 
Additionally, the GradientBoost library (version 1.5.0) was 
used to implement gradient boosting algorithms during 
model training and testing. A detailed literature search 
identified previous LDL estimation algorithms(6-10). Our 
selection of analysis methods is based on various reviews of 
the use of the best combined ML algorithms that can detect 
linear or non-linear relationships between independent and 
dependent variables. Three ML algorithms (decision tree, 
random forest, and gradient boosting) were used to test 
linearity in the preprocessed data.

The linearity of the new dataset all-TG, obtained by 
combining the hospital 1 and hospital 2 subsets, was also 
verified. After verifying the linearity of the high-TG data set, 
the high-TG analysis was considered a regression analysis, 
and the prediction scores for LDL values from seven 
individual ML algorithms were determined separately for 
the three data sets (hospital 1, hospital 2, and all-TG). Next, 
LDL values for patients at both hospitals were predicted 
using a combination of the three algorithms described 
above. The new models were constructed by stacking the 
highest-performing algorithms: random forest, XGBoost, 
and decision tree. Stacking is an ensemble ML technique 
that combines multiple high-performing ML algorithms 
to produce the highest-performing predictive model. Early 
results indicated that the ensemble ML method using all-
TG improved predictions of LDL values and LDL-level 
classification. Accordingly, the highest-performing random 
forest and XGBoost models were used as base learners, and 
the decision tree algorithm was stacked as the meta-learner 
to produce a meta-model.

Hence, a new stacked ensemble model was designed in our 
study. The untuned model was tested on the all-TG dataset 
and was later tuned. Hyperparameter tuning is a technique in 
ML model design used to achieve the highest final test scores 
across all performance parameters. After hyperparameter 
tuning, the highest-performing stacked ensemble ML model 
(model-3) shown in Figure  3  was obtained. The start-up 
model was model 1. Model 2 was obtained using only the 
hospital 2 dataset. Model-1 is our previous p-LDL-M {2} 
model in work(4). The performances of all three models were 
tested. Model-3’s LDL prediction was tested on the all-TG 
dataset to evaluate the effects of a larger dataset and model 
improvements on predictive performance. The predicted LDL 
values were placed into LDL-level classes in the final step, 
as shown in Figure 3. During the above design and selection 
processes, all key steps and recommendations of the IFFC for 
developing a medical ML application were followed. Figure 3, 
supported by the above-detailed explanations of our design’s 
architecture, meets the reproducibility recommendation of 
IFFC.

Statistical Analysis

The measured direct LDL was accepted as the actual value. 
The predicted and calculated LDL values were compared with 
the actual LDL values. Statistical analyses were performed 
using IBM® SPSS® Statistics 26 for Windows®. A paired t-test 
was used to compare the means. Pearson’s and Spearman’s 
correlation tests were performed to assess the association 
between direct LDL and the predictions of the designed ML 
models and the Sampson-NIH equation (hereafter referred to 
as the NIH-Equ-2 method). Sometimes, the two correlations 

Figure 2. SHAP graph of direct LDL dataset parametersfeatures

SHAP: SHapley Additive exPlanations, LDL: Low-density lipoprotein
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disagree on the strength of the correlation between an 
independent and dependent variable because of outliers(6). 
Therefore, we included both in our work to determine 
whether such a disagreement existed. The present study 
found no discrepancy between the Pearson and Spearman 
correlation coefficient matrices; only minor differences, all 
less than 1.000, were observed.

Statistical significance was set at p<0.05, and a Passing-
Bablok regression was conducted to determine the 
agreement between the prediction models and the current 
measurements. Bland-Altman plots were used to assess 
systematic bias across different direct LDL concentrations. In 
the Bland-Altman plots, differences between methods were 
plotted against direct LDL measurements.

The LDL levels classification performance of the designed 
models and the NIH-Equ-2 in classifying them was also 
assessed in accordance with the 2019 ESC/EAS Guidelines. 
Each subject’s predicted or calculated LDL level class was 
compared with the subject’s actual LDL level class. One way 
to measure and compare ML model performance is to report 
precision, recall, balanced accuracy, F1 score, and specificity 
for the model’s predictions. The parameters used in the 
calculations for the equations in our study are defined as 
follows:

• True positive: The number of cases when the subject’s LDL 
class was correctly identified.

• False positive: The number of cases when the subject’s LDL 
class is incorrectly identified.

• True negative: The number of cases when the subjects out 
of an LDL class are correctly identified (not applicable in our 
study).

• False negative: The number of cases that subjects out of 
an LDL class is incorrectly identified Cohen’s Kappa statistic 
was used to assess agreement between the designed models 
and NIH-Equ-2 classifications. The Kappa result can be 
interpreted as follows: values ≤0 indicating no agreement, 
0.01-0.20 as none to slight, 0.21-0.40 as fair, 0.41-0.60 as 
moderate, 0.61-0.80 as substantial, and 0.81-1.00 as almost 
perfect agreement(6).

Results

Basic Statistics Results

A correlation matrix of designed models, NIH-Equ-2, and the 
actual direct LDL is given in Figure 4. The Figure shows that 
all models and NIH-Equ-2 results are strongly correlated 
with the exact values. However, the correlation for model-3 
is exceptionally high (r=0.996). NIH-Equ-2’s correlation with 
the actual values is the lowest, at 0.862.

The analysis of the scatter correlation plots of the compared 
methods (Figure 5) showed that the NIH-Equ-2 results were 
scattered, and the R2 value was low (R2=0.7443). Model-3 
produced the best results, with R2 close to 1 (R2=0.9923) and 
low scatter. Interim model-2 exhibited a slightly high degree 
of scatter, with an R2 value of 0.9494.

Figure 3. The proposed highest-performing LDL prediction ML model-3 architecture

LDL: Low-density lipoprotein, ML: Machine-learning
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The receiver operating characteristic (ROC) curves for the six 

classes predicted by model-3 are shown in Figure 6. The area 

under the ROC curve (AUC) indicates the performance of a 

model across all possible classification thresholds. A value 

greater than 0.9 is considered outstanding. Our ROC curves 
showed a micro-averaged AUC of 97% across five classes.

The AUC for the non-critical class 3 was the lowest [89%; 95% 
confidence interval (CI), 8493%]. Therefore, the average AUC 

Figure 4. Correlation matrix of NIH-Equ-2, designed ML models and Direct LDL

NIH-Equ-2: National Institutes of Health-Equ-2, LDL: Low-density lipoprotein, ML: Machine-learning

Figure 5. Scatter plots of correlations between predicted and direct LDL

A: NIH-Equ-2 vs. direct-LDL scatter graph, B: Model-1 vs. direct-LDL scatter graph, C: Model-2 vs. direct-LDL scatter graph, D: Model-3 
vs. direct-LDL scatter graph, NIH-Equ-2: National Institutes of Health-Equ-2, LDL: Low-density lipoprotein
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indicates that our proposed model achieves good predictive 
accuracy and precision across all classes. The average AUC 
of the precision-recall curve is also satisfactory at 0.90 (95% 
CI, 0.86-0.93). However, the AUC of class 3 is the lowest at 
0.74 (95% CI, 0.71-0.77). Fortunately, class 3 is not the level at 
which LDL underestimation is critical. The AUC for the class 
4 critical LDL level is high at 0.94 (95% CI, 0.90-0.98).

The Bland-Altman plot of direct LDL and model-3 is given 
in Figure 7. As observed, most measurements are above the 
mean and fall within the 95% CI. However, some values do 
not fall within the 95% CI, which requires an explanation. The 
reason for the high number of outliers in the CI is presented 
in the next section.

Kappa scores (Table  3) were obtained by comparing the 
actual LDL levels with the predicted and calculated LDL 
levels. The lowest Kappa score was 0.420 for NIH-Equ-2’s 
LDL-level classification, while the highest was 0.981 for 
model-3. These results indicate that the performance of 
model 3 was best when data from hospital 1 and hospital 2 
were combined.

Discussion
Our study aims to predict LDL levels in high-TG subjects. 
Based on our literature review, this study is the second ML-
based study on high-TG subjects in Türkiye.

The categorical classification of patients’ LDL levels is as 
important as the quantitative LDL value for guiding lipid-

lowering therapy. Clinicians apply various treatments, 
from dietary changes and exercise to multidrug therapies, 
depending on the patient’s LDL level. Therefore, the LDL 
values under study were categorized into classes according 
to the 2019 ESC/EAS Guideline(5). The data preparation, 
model selection, design, and validation steps were completed 
in accordance with the IFFC recommendations. The most 
important findings of our research are discussed below. 

As illustrated in Figure 1, class 1 (0-54 mg/dL) had the 
lowest number of cases, whereas class 5 (116-189 mg/dL) 
had the highest (766 cases). The mean values of the datasets 
play a crucial role in representing the characteristics of the 
studied population. Upon examining the lipid profiles of the 
individuals included in our research, it was observed that 
the average TC, TG, and LDL levels were elevated, whereas 
average HDL levels were comparatively low compared 
with similar ML studies(7,9,11). These discrepancies may be 
attributed to the dietary patterns prevalent in our country. 
Nevertheless, with the exception of TG levels, the lipid values 
reported by the NIH in the multicenter study by Sampson 
et al. (12) were largely consistent with ours. In contrast, the 
other four centers reported lower lipid values than those in 
our study.

In prior studies focused on low-TG LDL prediction, random 
forest has been the most commonly used ML algorithm. 
However, alternative approaches such as XGBoost, deep 
neural networks, support vector machines, linear regression, 

Figure 6. ROC curve and PRC of model-3 class predictions

A: Model-3 multi-class ROC curves, B: Model-3 multi-class precision-recall curves, ROC: Receiver operating characteristic, PRC: 
Precision-recall curve, AUC: Area under the curve



316

Anatol J Gen Med Res 2025;35(3):307-320

and k-nearest neighbors have also been employed(8,9,11). 
In the present study, the stacked ensemble ML model-3 
demonstrated superior performance and yielded the most 
accurate predictions.

Model 3 yielded several noteworthy findings. When its 
predictions were compared with direct LDL measurements, 
model-3 demonstrated the highest accuracy and 
correlation coefficients and the lowest error rates (mean 
absolute error, mean squared error, mean absolute 
percentage error). Notably, the best performance was 
achieved using the full all-TG dataset rather than the high-
TG subset. When the entire dataset, including calculated 

LDL values, was utilized, model-3’s prediction performance 
improved by 12.90% compared with predictions based 
solely on the high-TG group. Additionally, classification 
of LDL levels exhibited superior accuracy and minimal 
variability when using the all-TG dataset. Model-3 
also outperformed the well-established NIH-Equ-2 
method, showing a 13.45% improvement margin. 
These findings highlight the advantage of combining data 
from hospital 1 and hospital 2 to enhance LDL estimation. 
Moreover, the study confirms the following:

•  The previously known strong correlations between TC, 
non-HDL, and direct LDL.

• The strong performance of NIH-Equ-2 in calculating LDL.

• The success of ML in estimating LDL values.

• The linear relationship between TG and LDL.

Model-3-predicted results and direct LDL measurements 
were significantly correlated (r=0.996). The algorithm 
results of Anudeep et al.(7) and Singh et al.(9) were also 
significantly associated with the direct-LDL measurements 
(0.98 and 0.982). The more robust correlation results 

Figure 7. Bland-Altman plot between direct LDL and model-3

LDL: Low-density lipoprotein, SD: Standard deviation

Table  3. Model-1, model-2, model-3, and NIH-Equ-2 
predicted Kappa scores of direct

Model/formula Cohen’s Kappa score

NIH-Equ-2 0.420a

Model-1 0.494a

Model-2 0.912b

Model-3 0.981b

a: Moderate aggrement, b: Almost perfect aggrement, NIH-Equ-2: National 
Institutes of Health-Equ-2
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in independent studies indicate that ML algorithms and 
ensemble techniques can predict LDL values better than 
previously developed formulae(13).

Another interesting result was the difference between NIH-
Equ-2 mean and the direct LDL mean (136.12±39.38 and 
148.80±44.42 mg/dL, respectively). The relatively large 
difference was disappointing. In contrast, the mean value 
obtained in model 3 did not differ significantly. Our model-
3’s superior statistical performance was further supported 
by higher precision, recall, balanced accuracy, F1 score, and 
specificity.

The resulting SHAP graph is shown in Figure 2. TC was the 
most impactful feature in our SHAP graph (Figure  2). The 
impact of TC was validated by the highest Pearson correlation 
value, 0.844, in Figure 8. There was also a high correlation 
between TC and direct-LDL in the study by Chen et al.(14).

Beyond TC, the SHAP summary plot revealed that TG and 
non-HDL cholesterol made substantial positive contributions 
to the prediction of LDL, reflecting the well-known metabolic 
coupling between TG-rich lipoproteins and LDL particles. 
HDL-C exerted a mild inverse effect, consistent with its 
protective role in reverse cholesterol transport. Age showed 
a modest positive effect, whereas sex contributed minimally, 
likely because lipid distributions were similar between 
sexes in the dataset. These findings support the biological 
plausibility of the model outputs.

The scatter plot of model-3 results in Figure 5 shows that our 
model results are almost linear, in contrast to the scattered 
results of NIH-Equ-2. Model-3’s p-value (Figure  5  4.27%) 
is lower than the %5.46 of desirable biological variation 
database specifications for the LDL cholesterol(15). Our scatter 
performance is also consistent with Anudeep et al.(7) low-
scatter study. Our study also agreed with Anudeep et al.(7) 
find that different formulae can produce negative results, 
even though their correlation values (r) vary between 0.89 
and 0.94. 

The R2 value of model-3 in our study was comparable to, yet 
slightly higher than, the R2 reported in the study by Chen et 
al.(14) In the research conducted by Kim et al.(16) where the 
XGBoost method-also employed in our study-was applied 
consecutively, the R2 value was relatively high but still 
moderately lower than that achieved by our model. 

Extensive evidence from epidemiological studies, Mendelian 
randomization analyses, and randomized controlled trials 
has established a log-linear association between LDL levels 

and ASCVD. Consequently, clinical guidelines consistently 
emphasize lipid-lowering therapies as essential for 
improving ASCVD-related outcomes. The effectiveness of 
these interventions is supported by foundational scientific 
research, clinical data, genetic studies, randomized trials, 
and population-based analyses(17,18). Furthermore, LDL 
concentrations directly inform the selection and dosage of 
cholesterol-lowering treatments. One study, for instance, 
reported that each 1 mmol/L reduction in LDL was associated 
with a 20% decrease in major cardiovascular events(19).

Previous studies have shown that traditional predictive 
models and formulae exhibit greater error rates at lower 
LDL concentrations (<70 mg/dL). In contrast, our model-3 
achieved a classification error rate of just 4.8% (2 out of 41) in 
this range (Table 4), outperforming the Weill-Cornell model, 
which had an error rate of 7.5%(9). Similar performance was 
observed in the study by Çubukçu and Topcu(11) although it is 
important to note that their cohort consisted of patients with 
TG levels between 177 and 399 mg/dL(9). Based on the 2019 
ESC/EAS Guidelines, our model exhibited a 3.4% (4/119) 
classification error across the first three LDL categories 
(LDL <100 mg/dL). For comparison, error rates were 43.75% 
(77/176) for the NIH-Equ-2 formula, 11.4% (143/1254) for the 
Weill-Cornell model, and 3.47% (53/1528) for the model by 
Anudeep et al.(7) In the study by Barakett-Hamade et al.(8) 
LDL values were categorized into three groups, with the 
lowest group defined as <80 mg/dL. The misclassification 
rate for this category was 12.5% (793/6327).

It is well established that elevated LDL levels contribute 
significantly to morbidity and mortality among patients 
with cardiovascular disease; intensive hyperlipidemia 
management has been shown to improve quality of life, 
particularly in patients who are over-classified(20,21). A 
correct or slightly higher classification of LDL levels (over-
classification) ensures that patients receive appropriate or 
more aggressive treatment regimens. In our study, model 3 
occasionally overclassified LDL levels by one category (Table 
4). However, we argue that this slight overestimation poses 
minimal clinical risk, as it would lead to intensified treatment, 
which is generally safer than the risk of undertreatment(22). 
Notably, therapies such as ezetimibe and monoclonal 
antibodies, when added to statin-based treatment, effectively 
reduce LDL levels and improve cardiovascular outcomes 
and overall survival. Studies have shown that inclusion of 
ezetimibe lowers the risk of cardiovascular events without 
increasing adverse effects or toxicity, even in patients with 
acute coronary syndromes or with already optimal LDL 
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levels. Moreover, there is currently no evidence suggesting 
harm from adding ezetimibe in cases with moderate LDL 
concentrations(23,24). In contrast, under-classification may 
have more serious consequences, such as misclassifying 
a high-risk patient from class 5 to class 4, resulting in 
inadequate treatment. Importantly, the under-classification 
rate of model 3 was remarkably low-only 0.39% (three of 
766 cases).

Lipid-lowering therapies impose a considerable financial 
burden on healthcare systems globally(25). Although beta-
quantification is considered the reference standard for LDL 
measurement, it is not feasible for routine clinical use due to 
its high cost and labor intensity(26). As a result, enzymatic and 
homogeneous immunoassay methods have largely replaced 
it. Following the establishment of correlations between 

LDL and other lipid fractions, direct LDL measurement 
techniques were gradually replaced by calculation-based 
methods such as the Friedewald, Martin-Hopkins, and NIH-
Equ-2 formulae. Each of these approaches offers distinct 
advantages. For instance, whereas combined hospital 
datasets perform well when TG levels exceed 400 mg/
dL, NIH-Equ-2 can extend its calculations up to 800 mg/
dL. Notably, the Martin-Hopkins method utilizes variable 
adjustment factors tailored to TG levels, allowing for accurate 
estimations even in non-fasting individuals(9). To overcome 
the limitations of traditional formulae, recent studies have 
shifted focus toward ML-based LDL prediction models. 
Based on our literature review, this study is the second to 
use ML algorithms to predict LDL levels in patients with TG 
>400 mg/dL, following our initial publication. This makes 
our work particularly relevant in clinical settings where 

Table 4. Results of classifications by model-3 (n=1279)

Model-3 class
Direct LDL class  

1 2 3 4 5 6 Total

1 16 0 0 0 0 0 16

2 0 23 0 0 0 0 23

3 0 2 117 2 1 0 122

4 0 0 1 128 2 0 131

5 0 0 1 2 762 2 767

6 0 0 0 0 1 219 220

Total direct LDL 16 25 119 132 766 221 1279
LDL: Low-density lipoprotein

Figure 8. Correlation matrices of direct LDL parameters

A: Pearson correlation matrix, B: Spearman correlation matrix, NIH-Equ-2: National Institutes of Health-Equ-2, LDL: Low-density 
lipoprotein, HDL: High-density lipoprotein



319

Demirci et al. Improving Machine-learning-based LDL Estimation

precise LDL classification is crucial for initiating appropriate 
therapeutic interventions(5). The effectiveness of our model 
is further validated by its Kappa score, a statistical measure 
of classification agreement. Model-3 achieved a Kappa 
score of 0.981, significantly outperforming the NIH-Equ-2 
formula, which had a Kappa score of 0.420. These results 
indicate that model-3 is in “almost perfect agreement” with 
direct LDL measurements, whereas NIH-Equ-2 falls under 
the category of “moderate agreement”. Although numerous 
studies endorse the reliability of NIH-Equ-2 for LDL 
estimation(12,27), it is important to note that NIH-Equ-2 was 
calibrated against LDL values derived from the reference 
beta-quantification technique. In contrast to many existing 
studies, our research utilized results from two distinct auto-
analyzer platforms. Therefore, variations in accuracy may 
stem from differences in analytical methods, ML models, or 
the analyzers themselves(26).

The number of predictions deviating from the mean in the 
Bland-Altman plot comparing direct LDL and model-3 
was high. The highest number deviation is observed in 
classes 5 and 6 (Figure  7). The large numbers in both 
classes are due to the very wide range of class 5 (116-189) 
and the open-ended range of class 6 (>190). The number 
of deviations from the acceptable region for the critical 
class 4 is four. The percentage of undesired predictions is 
negligible, with 4 instances out of 1279 total predictions, 
i.e., 0.31%.

The recommendations of the IFCC Working Group(3) have been 
followed carefully in our present work. In the last stage, the 
prediction results for the same high-TG patients were used 
to cross-validate the final model’s reliability. Thus, we can 
now claim the model’s applicability to data from different 
hospitals. We believe that our work will increase acceptance 
of ML in MAI applications and pave the way for future real-
world applications.

Study Limitations

Our study has some limitations. First, because our data 
were retrospective and beta-quantification is not used 
in routine laboratory practice, the more commonly used 
direct homogeneous immunoassay was employed. In this 
study, LDL-C values were obtained using a commercial 
homogeneous direct assay. However, previous studies 
have shown that homogeneous LDL-C methods can 
overestimate LDL-C levels by 7-12% compared to the beta-
quantification(28). This discrepancy is particularly pronounced 
in hypertriglyceridemic individuals (TG ≥ 400 mg/dL), where 

cholesterol from very LDL and intermediate DL fractions 
may be mistakenly included in LDL-C measurements. As a 
result, the LDL-C values used for training our model may 
contain a systematic bias. Future studies should validate 
the model using beta-quantification-based reference data 
or incorporate an adjustment to account for potential 
measurement bias in homogeneous LDL-C assays. Secondly, 
the effects of diseases that may influence the lipid profiles 
could not be assessed independently because of the study’s 
retrospective design. Third, sub-categorization of ethnic 
groups could not be performed. Since the target range was 
TG >400 mg/dL, TG values could not be subcategorized or 
analyzed in detail.

Conclusion
An MAI application that fully complied with the IFFC 
recommendations for predicting LDL using ensemble ML 
methods was presented. Performance results indicate that 
our newly designed ML estimation model, model-3, for 
predicting target high-TG values outperforms the NIH-
Equ-2 formula and our previous model. Our work can be 
included in the routine lipid profile without changing the 
main principles and methods if similar work is planned as 
a multicenter study, enriched with data from different races, 
and expanded to include multiple autoanalyzers.

Ethics

Ethics Committee Approval: Before commencing the 
study, the necessary approval was obtained from the Non-
Interventional Ethics Committee of University of Health 
Sciences Türkiye, İzmir Tepecik Education and Research 
Hospital, (approval no: 2023/13-23, date: 12.04.2023) 
and Non-Interventional Ethics Committee of Dokuz Eylul 
University Faculty of Medicine (approval no: 2023/20-04, 
date: 14.06.2023).

Informed Consent: Retrospective design.

Footnotes

Authorship Contributions

Surgical and Medical Practises: F.D., M.E., Ö.G.D., P.A., 
Concept: F.D., M.E., M.H.Ö., P.A., Design: F.D., M.E., M.H.Ö., 
Ö.G.D., P.A., Data Collection or Processing: F.D., M.E., Ö.G.D., 
Analysis or Interpretation: F.D., M.E., M.H.Ö., Ö.G.D., Literature 
Search: F.D., M.E., M.H.Ö., Ö.G.D., P.A., Writing: F.D., M.E.

Conflict of Interest: No conflict of interest was declared by 
the authors.



320

Anatol J Gen Med Res 2025;35(3):307-320

One of the authors of this article (F.D.) is a member of the 
Editorial Board of this journal. He was completely blinded to 
the peer review process of the article.

Financial Disclosure: The authors declared that this study 
received no financial support.

References
1.	 Davenport T, Kalakota R. The potential for artificial intelligence in 

healthcare. Future Healthc J. 2019;6:94-8. 

2.	 Park SH, Choi J, Byeon JS. Key principles of clinical validation, device 
approval, and insurance coverage decisions of artificial intelligence. 
Korean J Radiol. 2021;22:442-53. 

3.	 Master SR, Badrick TC, Bietenbeck A, Haymond S. Machine learning in 
laboratory medicine: recommendations of the IFCC Working Group. Clin 
Chem. 2023;69:690-8. 

4.	 Demirci F, Emec M, Gursoy Doruk O, Ormen M, Akan P, Hilal Ozcanhan 
M. Prediction of LDL in hypertriglyceridemic subjects using an 
innovative ensemble machine learning technique. Turkish Journal of 
Biochemistry. 2024;48:641-52. 

5.	 Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for 
the management of dyslipidaemias: lipid modification to reduce 
cardiovascular risk. Eur Heart J. 2020;41:111-88. 

6.	 McHugh ML. Interrater reliability: the Kappa statistic. Biochem Med 
(Zagreb). 2012;22:276-82. 

7.	 Anudeep PP, Kumari S, Rajasimman AS, Nayak S, Priyadarsini P. 
Machine learning predictive models of LDL-C in the population of 
eastern India and its comparison with directly measured and calculated 
LDL-C. Ann Clin Biochem. 2022;59:76-86. 

8.	 Barakett-Hamade V, Ghayad JP, Mchantaf G, Sleilaty G. Is machine 
learning-derived low-density lipoprotein cholesterol estimation 
more reliable than standard closed form equations? Insights from a 
laboratory database by comparison with a direct homogeneous assay. 
Clin Chim Acta. 2021;519:220-6. 

9.	 Singh G, Hussain Y, Xu Z, et al. Comparing a novel machine learning 
method to the Friedewald formula and Martin-Hopkins equation for 
low-density lipoprotein estimation. PLoS One. 2020;15:e0239934. 

10.	 Hidekazu I, Nagasawa H, Yamamoto Y, et al. Dataset dependency of low-
density lipoprotein-cholesterol estimation by machine learning. Ann 
Clin Biochem. 2023;60:396-405.

11.	 Çubukçu HC, Topcu Dİ. Estimation of low-density lipoprotein cholesterol 
concentration using machine learning. Lab Med. 2022;53:161-71.

12.	 Sampson M, Ling C, Sun Q, et al. A new equation for calculation of low-
density lipoprotein cholesterol in patients with normolipidemia and/or 
hypertriglyceridemia. JAMA Cardiol. 2020;5:540-8. 

13.	 Atabi F, Mohammadi R. Clinical validation of eleven formulas for 
calculating LDL-C in Iran. Iran J Pathol. 2020;15:261-7. 

14.	 Chen L, Rong C, Ma P, Li Y, Deng X, Hua M. A new equation for estimating 
low-density lipoprotein cholesterol concentration based on machine 
learning. Medicine (Baltimore). 2024;103:e37766. 

15.	 Westgard J. Desirable biological variation database specifications. 
Available from: https://www.westgard.com/clia-a-quality/quality-
requirements/238-biodatabase1.html

16.	 Kim Y, Lee WK, Lee W. Prediction of low-density lipoprotein cholesterol 
levels using machine learning methods. Lab Med. 2024;55:471-84. 

17.	 Writing Committee; Lloyd-Jones DM, Morris PB, et al. 2022 ACC 
expert consensus decision pathway on the role of nonstatin therapies 
for LDL-cholesterol lowering in the management of atherosclerotic 
cardiovascular disease risk: a report of the American College of 
Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 
2022;80:1366-418. Erratum in: J Am Coll Cardiol. 2023;81:104.

18.	 Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines 
for the management of dyslipidaemias. Eur Heart J. 2016;37:2999-3058.

19.	 Cholesterol Treatment Trialists’ (CTT) Collaboration; Baigent C, 
Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL 
cholesterol: a meta-analysis of data from 170,000 participants in 26 
randomised trials. Lancet. 2010;376:1670-81.

20.	 Emerging Risk Factors Collaboration; Di Angelantonio E, Gao P, et al. 
Lipid-related markers and cardiovascular disease prediction. JAMA. 
2012;307:2499-506.

21.	 Ference BA, Yoo W, Alesh I, et al. Effect of long-term exposure to lower 
low-density lipoprotein cholesterol beginning early in life on the risk of 
coronary heart disease: a Mendelian randomization analysis. J Am Coll 
Cardiol. 2012;60:2631-9. 

22.	 Sathiyakumar V, Blumenthal RS, Elshazly MB: New information on 
accuracy of LDL-C estimation. American College of Cardiology. March 
20. 2020. (Accessed: March 27, 2024). Available from: https://www.acc.
org/latest-in-cardiology/articles/2020/03/19/16/00/new-information-
on-accuracy-of-ldl-c-estimation

23.	 Oyama K, Giugliano RP, Blazing MA, et al. Baseline low-density 
lipoprotein cholesterol and clinical outcomes of combining ezetimibe 
with statin therapy in IMPROVE-IT. J Am Coll Cardiol. 2021;78:1499-507.

24.	 Koskinas KC, Siontis GCM, Piccolo R, et al. Effect of statins and non-
statin LDL-lowering medications on cardiovascular outcomes in 
secondary prevention: a meta-analysis of randomized trials. Eur Heart 
J. 2018;39:1172-80. 

25.	 Michaeli DT, Michaeli JC, Boch T, Michaeli T. Cost-effectiveness of 
lipid-lowering therapies for cardiovascular prevention in Germany. 
Cardiovasc Drugs Ther. 2023;37:683-94. 

26.	 Contois JH, Langlois MR, Cobbaert C, Sniderman AD. Standardization 
of apolipoprotein B, LDL-cholesterol, and Non-HDL-cholesterol. J Am 
Heart Assoc. 2023;12:e030405.

27.	 Sampson M, Wolska A, Meeusen JW, Otvos J, Remaley AT. The Sampson-
NIH Equation is the preferred calculation method for LDL-C. Clin Chem. 
2024;70:399-402. 

28.	 Yano M, Matsunaga A, Harada S, et al. Comparison of two homogeneous 
LDL-cholesterol assays using fresh hypertriglyceridemic serum and 
quantitative ultracentrifugation fractions. J Atheroscler Thromb. 
2019;26:979-88.


